Landscape architects face increasing pressure to design high-performance landscapes in cities where regulatory requirements and underlying engineering models tend not to reflect the measurable capacity of green infrastructure within different contexts, particularly soil storage and evapotranspiration. Understanding how built green infrastructure performs is critical for informing new engineering models, advocating progressive regulations, and advancing sustainable landscape design.To help address this knowledge gap between science and policy, Andropogon and researchers at the University of Pennsylvania collaboratively pursued a three-year post-occupancy study at Shoemaker Green, a non-infiltrating, 2.75-acre urban park, designed as a high-performance college green. The team monitored runoff volume, water quality, soils, and vegetation to better understand the landscape’s performance and evaluated the long-term impacts of adaptive management. Findings reveal that the park has the potential to manage more than three times the stormwater that the engineering models predicted.
The Shoemaker Green research study revealed that:
Effective advocacy for GSI policy and implementation requires more field-tested research to determine which soils and plants have the potential to manage the most stormwater under a wide variety of conditions. This research can not only help advocate for more implementation of GSI systems, but also achieve goals such as net-zero water on a site though programs such as SITES and the Living Building Challenge.